Osteochondral autologous transplantation for the treatment of full-thickness cartilage defects of the shoulder

RESULTS AT NINE YEARS

J. Kircher, T. Patzer, P. Magosch, S. Lichtenberg, P. Habermeyer

From the ATOS Clinic, Heidelberg, Germany

We describe the outcome at a mean follow-up of 8.75 years (7.6 to 9.8) of seven patients who had undergone osteochondral autologous transplantation for full-thickness cartilage defects of the shoulder between 1998 and 2000. These patients have been described previously at a mean of 32.6 months when eight were included. One patient has been lost to follow-up. The outcome was assessed by the Constant shoulder score and the Lysholm knee score to assess any donor-site morbidity. Standard radiographs and MR scores were obtained and compared with the pre-operative findings and the results from the previous review.

No patient required any further surgery on the shoulder. The mean Constant score improved significantly until the final follow-up (p = 0.018). The Lysholm score remained excellent throughout. There was a significant progression of osteoarthritic changes from the initial surgery to the first and final follow-up but this did not appear to be related to the size of the defect, the number of cylinders required or the Constant score (p = 0.016). MRI showed that all except one patient had a congruent joint surface at the defect with full bony integration of all osteochondral cylinders.

The results have remained satisfactory over a longer period with very good objective and subjective findings.

The incidence of defects of the articular cartilage of the shoulder is estimated to be between 5% and 17% in athletes engaged in overhead sporting activity. Treatment remains a problem because of the limited capacity for repair.1,2

The fibrocartilaginous repair stimulated by microfracture, drilling and abrasion chondroplasty lacks the resilience of hyaline cartilage.3-5

Autologous chondrocyte implantation (ACI) as introduced by Brittberg et al6 for the treatment of lesions at the knee has been developed with the addition of matrix or scaffold-associated techniques for use in clinical practice.7-9 These methods often require a two-stage procedure and are expensive. It remains uncertain whether long-lasting hyaline-like cartilage can be generated.10-15

The use of structural allografts for the treatment of osteochondral defects at the knee and shoulder has been described, but not in controlled studies with sufficient numbers to draw conclusions about the outcome.16-19 An alternative is the transplantation of autologous cartilage in conjunction with the underlying bone for small defects.20,21 It has been shown that the primary stability of the osteochondral cylinders increases with the size and the use of bigger cylinders of 8 mm to 12 mm.22,23 The method has been described for almost all the large joints.24-33 Although usually there are no problems with bony ingrowth, it should be noted that healing does not occur at the interface between the host cartilage and the transplanted cylinders.12,34-36 We reported the use of this technique at the shoulder in a series of eight patients with good short-term results37 and it is also reported in an isolated case report.38 Our aim in this study was the re-evaluation of our series after a longer follow-up in regard to the clinical results and the development of osteoarthritis.

Patients and Methods

Seven patients from the initial series were reassessed at a mean follow-up of 8.75 years (7.6 to 9.8) by clinical examination and scoring, and standard radiography comprising true anteroposterior (AP) views in neutral, internal and external rotation and an axillary view, as well as by MRI. One patient had been lost to follow-up because of problems involving the donor site at the ipsilateral knee. This patient refused an invitation to re-attend, but reported his satisfaction with the shoulder and no current problem with his knee during a telephone interview.
The presence of osteoarthritis was graded according to the method of Samilson and Prieto. The joint space was measured as the minimum distance found on an AP view. The integrity of the osteochondral cylinder and congruity of the joint surface were assessed on standard MR scans. The Constant score for the shoulder and the Lysholm score of the knee from which the osteochondral graft had been harvested were calculated. Self-assessment of patients for the entire treatment was graded as very satisfied, or satisfied, not satisfied, or disappointed. The series and the interventions are described in Tables I and II.

Statistical analysis. This was performed using the Wilcoxon signed-rank test for non-parametric data with the level of significance set at a p-value ≤ 0.05, for all seven patients at the final follow-up.

Results
All the patients attending for review were subjectively very satisfied with the result and stated that they would have undergone the procedure again. None of these patients had required any revision surgery for the shoulder or the operated knee.

The overall mean Constant score improved from 76.2 points (65.9 to 89.6) pre-operatively to 89.6 (83.4 to 95.4) at the first follow-up (32.6 months) and to 90.9 points (80 to 97) at the final follow-up. This increase in the score from operation to the first follow-up was statistically significant (p = 0.018), but not from the first to the final follow-up (p = 0.612). The pain component of the Constant score significantly improved from operation to the first follow-up in all patients (p = 0.018). From the first to the final follow-up three patients showed no change in their pain level, three showed an increase in their pain score which did not reach statistical significance (p = 0.257) and one showed an increase in the pain score of only one point from the first to the final follow-up. All patients significantly (p = 0.018) increased the level of their activities of daily living from operation to the first follow-up with three patients
maintaining this level, two showing a slight decrease, which was not statistically significant (p = 0.461), and two showing an increase from the first to the final follow-up. The range of movement was good for all patients at every stage of assessment. All the patients, except one who had little change, significantly increased their strength from the first to the final follow-up (p = 0.028, Table III).

The Lysholm score was 100 points for all patients before operation, with a mean of 96.9 (87 to 100) at the first and of 99.3 (95 to 100) at the final follow-up. Four patients had no disturbance in their knee function through the whole course, two were returned to full knee function after the first follow-up and one showed a marginal decline from 100 to 95 points at the final follow-up (Table III).

An increase was found in the osteoarthritic grade according to Samilson and Prieto39 from the pre-operative findings to the first and the final follow-up which was statistically significant at the first interval but not for the changes between the first (p = 0.014) and final follow-up (p = 0.157). All patients showed an increase of at least one grade in the Samilson and Prieto classification from operation to the first follow-up. There did not appear to be any relationship between the size of defect or the number of osteochondral cylinders used for the repair and the development of osteoarthritis (Tables I and II, Fig. 1). Changes to the measured width of the glenohumeral joint space were much less pronounced than the increase in the Samilson and Prieto grade and did not appear to be directly related to it (Tables I and II).

Neither the arthritic changes according to Samilson and Prieto grades nor decrease of glenohumeral joint space seemed to be reflected in the overall Constant score or its component parts (Tables I, II and III).

All except one patient presented a congruent joint surface on the final MR scan and all cylinders showed full integration with the surrounding bone. One patient whose MR scan indicated partial osteonecrosis of the bony part of the osteochondral cylinder at the first follow-up showed complete recovery at the final follow-up (Table IV).

An increase was found in the osteoarthritic grade according to Samilson and Prieto39 from the pre-operative findings to the first and the final follow-up which was statistically significant at the first interval but not for the changes between the first (p = 0.014) and final follow-up (p = 0.157). All patients showed an increase of at least one grade in the Samilson and Prieto classification from operation to the first follow-up. There did not appear to be any relationship between the size of defect or the number of osteochondral cylinders used for the repair and the development of osteoarthritis (Tables I and II, Fig. 1). Changes to the measured width of the glenohumeral joint space were much less pronounced than the increase in the Samilson and Prieto grade and did not appear to be directly related to it (Tables I and II). Neither the arthritic changes according to Samilson and Prieto grades nor decrease of glenohumeral joint space seemed to be reflected in the overall Constant score or its component parts (Tables I, II and III).

All except one patient presented a congruent joint surface on the final MR scan and all cylinders showed full integration with the surrounding bone. One patient whose MR scan indicated partial osteonecrosis of the bony part of the osteochondral cylinder at the first follow-up showed complete recovery at the final follow-up (Table IV).
Discussion

Our findings have shown no deterioration over a longer period of follow-up, and no complications at the shoulder have emerged. Donor-site morbidity at the knee was not a problem except in one patient in the original series who required two additional operations which resulted in a good result, but he declined to participate in this further review.

The development of arthritic changes at the operated shoulder was found in all patients, this was already detectable at the first follow-up at a mean of 32 months (8 to 47), and in two patients who showed further progression at the final follow-up. These radiological findings were not matched by any functional restriction, pain or loss of patient satisfaction.

Our study could not determine whether the arthritic changes at the shoulder were due to the osteochondral transplantation or reflected the natural course of the underlying disease, the initial trauma or instability. Three patients in our series had a Hill-Sachs lesion at the time of the initial operation and all had additional chondral lesions at the humerus, the glenoid or both. Progressive degeneration of the shoulder has been described in post-traumatic instability managed conservatively and operatively.13,42-50

Buscayret et al51 found an association of the development of glenohumeral arthritis with the presence of a Hill-Sachs lesion, the time to surgical stabilisation, the presence of impaction fracture of the glenoid, age, the time of the initial dislocation and the presence of a rotator-cuff tear. In our patients there was a wide range of time between the initial trauma or shoulder dislocation and the first clinical symptoms to surgery and no consistency with the development of osteoarthritis.

Our statistical analysis was limited because of the small number of patients. There is a need for controlled studies to compare the clinical long-term results of bone-marrow stimulation techniques, ACI and matrix or scaffold-associated ACI and autologous osteochondral transplantation at the shoulder. We continue to use osteochondral autologous transplantation for the treatment of limited cartilage lesions of the shoulder.

Table IV. MRI findings at the first and final follow-up

<table>
<thead>
<tr>
<th>Case</th>
<th>MRI first follow-up</th>
<th>MRI final follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Integrity</td>
<td>Glenoid lesion</td>
</tr>
<tr>
<td>1</td>
<td>Intact</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Intact</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Intact</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Avascular necrosis</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Intact</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Intact</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Intact</td>
<td>No</td>
</tr>
</tbody>
</table>

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

References


