Correlation of clinical and ultrasonographic findings after Achilles tenotomy in idiopathic club foot

S. L. Barker, C. B. D. Lavy

From Beit Trust
CURE International Hospital, Blantyre, Malawi

Achilles tenotomy is a recognised step in the Ponseti technique for the correction of idiopathic congenital talipes equinovarus in most percutaneous cases. Its use has been limited in part by concern that the subsequent natural history of the tendon is unknown. In a study of 11 tendons in eight infants, eight tendons were shown to be clinically intact and ten had ultrasonographic evidence of continuity three weeks after tenotomy. At six weeks after tenotomy all tendons had both clinical and ultrasonographic evidence of continuity.

Idiopathic congenital talipes equinovarus can be managed by the technique described by Ponseti in infants under one year of age with a success rate in excess of 90%.1-3

Percutaneous Achilles tenotomy just above the calcaneal insertion may be used in up to 95% of patients based on the hypothesis of Ponseti and others that the tendon appears to re-unite within three weeks.2,4,5 Two previous studies have demonstrated healing when the tendon was completely sectioned more proximally at the musculotendinous junction in children with cerebral palsy6 or inadvertently in percutaneous triple hemisection lengthening of tendo Achillis.7

We use the Ponseti technique and believe it to be of particular value in countries where there are few surgeons, and operative resources are scarce. One author (CBDL) has been involved in teaching the technique in several other developing countries and has noticed a marked reluctance among clinicians to perform Achilles tenotomy, not because they feel that the technique is difficult, but because they fear the consequences of complete division of a major tendon.

The aim of this study was to test the hypothesis, by clinical assessment and ultrasound imaging, that healing occurs rapidly and spontaneously following mid-substance transverse Achilles tenotomy in infants.

Patients and Methods

In the first three months of 2005 patients attending a single centre with a de novo diagnosis of idiopathic congenital talipes equinovarus with no syndromic association were enrolled in the study. Each foot had already been treated by serial casting and had reached the point at which tenotomy was considered to be necessary by an orthopaedic surgeon (SLB) according to the criteria of Ponseti5 whereby the otherwise corrected foot could not be brought into passive dorsiflexion beyond the plantigrade position.

The study was explained to parents/guardians and signed consent obtained with details available in the local Chichewa language. There were eight infants with a total of 11 feet, five boys (two bilateral) and three girls (one bilateral). The mean age at tenotomy was 127 days (45 to 254). Each infant underwent clinical and ultrasonographic assessment before tenotomy was undertaken. Clinical assessment was undertaken with the foot in maximum passive dorsiflexion. Tendo Achillis was palpated and graded as absent, indeterminate or palpable. An ultrasound scan was taken over the posterior/lateral aspect of heel. A Toshiba ‘Tosbee’ Scanner (Toshiba Medical Systems, Crawley, UK) with 7.5 MHz probe was used longitudinally to determine the integrity of the tendon and positioned away from the proposed tenotomy wound. The result was recorded as normal if the tendon was in continuity, indeterminate if it was not possible to identify a tendon clearly, or absent when discontinuity was noted.

The tenotomy was performed by a medial percutaneous stab incision using a size 15 blade 2 cm above the calcaneum to cut the tendon from front to back according to the Ponseti technique.2 Care was taken to avoid inserting the blade any deeper than necessary and to position it posteriorly in order to avoid the posterior tibial neurovascular bundle and other tendons.
In each foot clinical evidence of a successful tenotomy was taken as a definitive increase in dorsiflexion at the ankle and lack of a palpable heel cord. Immediately after the tenotomy the ultrasound scan was repeated. The limb was then placed in a moulded plaster. Further clinical and ultrasonographic assessment was undertaken during scheduled changes of the plaster at three and six weeks after the tenotomy. Provision was made for further three-weekly scans should healing not have been demonstrated by six weeks after the tenotomy.

Results
In all feet a palpable tendo Achillis had been noted and preoperative ultrasound demonstrated a tendon in continuity (Fig. 1). It should be noted that although the structures could be seen in the static image, the tendon could be seen to move independently of the surrounding structures on the dynamic or real-time image. The tenotomy was performed without significant bleeding or complications. Post-tenotomy clinical assessment showed absence of the previously prominent tendon in all feet and a palpable gap in many. Post-tenotomy ultrasonographic assessment showed a gap in the tendon in 11 feet (Fig. 2).

The clinical and ultrasonographic findings before and immediately after tenotomy and at three and six weeks after healing are given in Table I. All tendons showed clinical evidence of an intact heel cord and ultrasonographic evidence of continuity by six weeks. Although the restoration of continuity is best appreciated in a dynamic scan,
Figure 3 shows a captured image of an intact tendon at three weeks.

Discussion

The Ponseti technique for the treatment of idiopathic congenital talipes equinovarus has been shown to be very effective. It requires little technology and is therefore suited to Africa and other areas with poor technological resources.

Reluctance to consider complete tenotomy of tendo Achillis may stem from three understandable concerns. First, sectioning of a tendon is not a normally-recommended treatment. Secondly, other structures may be inadvertently damaged during tenotomy and lastly the tendon may not heal satisfactorily. A recent report of the use of botulinum toxin A as an alternative way of defunctioning the tendo Achillis is limited by the availability of this toxin and its prohibitive cost in developing countries.

If reluctance to use percutaneous tenotomy cannot be overcome, the rate of tenotomy will be lower with a greater risk of failed correction. The indications for surgical tenotomy in orthopaedic surgery are limited and are usually reserved for fixed shortening of a muscle or muscle group. An infant with idiopathic congenital talipes equinovarus is a 'special case' by virtue of the abnormal gastrosoleal muscle complex in the calf. There is a definite risk of iatrogenic damage to adjacent structures if the tenotomy knife is used injudiciously. This can be obviated or significantly reduced in developed countries by the use of an open technique under general anaesthesia, but elsewhere in the world there is a risk of or lack of general anaesthesia. Complications of percutaneous tenotomy have been described, but in our study none were experienced, although the number of patients treated was small.

To overcome the final objection to tenotomy there must be a plausible mechanism to explain regeneration of the tendon and experimental evidence for it. Healing of the tendon has classically been described as involving extrinsic or intrinsic factors or a combination of the two. Recent research has suggested that embryonic mechanisms may be responsible for healing in the adult tendon. Thus the rapid healing in infants aged one to two months in whom progenitor cells are abundant, could involve the same mechanism.

Our study has shown that tendo Achillis can heal spontaneously and rapidly within six weeks. It does not comment on the strength of the healed tendon, but late rupture after this procedure has not been reported.

The authors are grateful to the staff of the Clubfoot Clinic at Beit CURE International Hospital, Malawi.

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

References