LONG-TERM RESULTS OF THE EVANS PROCEDURE FOR LATERAL INSTABILITY OF THE ANKLE

OLLI KORKALA, PEKKA TANSKANEN, JORMA MÄKIJÄRVI, TUOMAS SORVALI, MATTI YLIKOSKI, JUSSI HAAPALA

From Lahti City Hospital, Finland

We studied the late outcome of 40 ankles (from a consecutive series of 42) treated by a modified Evans procedure. The peroneus brevis tendon was used to fashion a static tenodesis. All the patients had suffered from persistent lateral instability following an ankle sprain. The follow-up period was between nine and 12 years.

Excellent or good results were achieved in 33 ankles (82.5%), three had a fair result, and four were poor. The clinical results were matched by the radiographic results which showed significant talar tilt or anterior talar translation in only three ankles. The functional result showed no positive correlation with the stress-radiographic analysis.

We concluded that this modification of the Evans operation gives satisfactory long-term results, which show little change from the good results at 24 to 35 months reported in an earlier paper from our department.

Persistent lateral instability is a common complication of severe ankle sprains left untreated or treated inadequately. In addition to recurrent sprains, swelling and pain are frequent, especially after exercise. Often, a sort of functional instability is manifested by fear of the ankle giving way (Freeman 1965), and this is more common in joints treated by conservative means rather than by primary operation (Korkala et al 1987).

Sometimes late instability can be treated by suture of the torn lateral ligaments (Broström 1966), but most surgeons prefer a tenodesis or reconstruction by a free or partly attached autogenous tendon graft. In most techniques the peroneus brevis tendon is used as a ligament substitute (Nilsonne 1932; Elmslie 1934; Watson-Jones 1952; Evans 1953; Weber and Hupfauer 1969; Snook, Chrisman and Wilson 1985).

While the short-term results of these reconstructions are satisfactory in most cases, it has been suggested that the results of the Watson-Jones tenodesis (van der Rijt and Evans 1984) and of the Evans tenodesis (Karlsson et al 1988) deteriorate after three to seven years. According to Karlsson et al, half the results of Evans' original procedure were poor by 10 to 17 years after the operation.

We have used a modification of the Evans operation, in which the tendon is sutured to the fibular periosteum (Lauttamus, Korkala and Tanskanen 1982) instead of being fixed to itself as originally described (Evans 1953). This modification was cited by Sisk and Canale (1980) as the actual Evans procedure.

PATIENTS

Between 1977 and 1980 we operated on 42 ankles in 40 patients for chronic post-traumatic instability. The mean age of the patients was 31.7 years (range 15 to 60); 10 were female.

The initial injury could be dated in 31 cases; it occurred six months to 33 years (mean 7.7) prior to surgery. No previous operations had been performed on these ankles.

Pre-operatively all had a positive anterior drawer sign and/or evidence of talar tilt (Lauttamus et al 1982).

METHODS

The operation. All had the same operation (Fig. 1). The peroneus longus and brevis tendons were exposed behind the lower fibula and below the lateral malleolus. The
original J-shaped skin incision was later discarded in favour of two separate incisions; a 1° vertical incision behind the fibula at the level of the tibiofibular syndesmosis and a curved 1° incision below the lateral malleolus. The peroneus brevis tendon was first sutured to the peroneus longus tendon, and then divided just distal to the suture. The cut tendon was dissected free from its muscle attachments and delivered into the distal incision. A tunnel 4 mm wide was made through the lateral malleolus in the direction of a line half-way between the anterior talofibular and the calcaneofibular ligaments. The tendon was passed proximally through the tunnel and its cut end was sutured with 1-O chromic catgut to the periosteum of the fibula under slight tension, with the ankle in neutral position (Fig. 1). Further sutures fixed the tendon to the periosteal lining at the distal opening of the tunnel.

After skin closure, a walking plaster cast was applied and the patients were allowed to bear full weight by the second postoperative day. The plaster cast was removed after four weeks.

![Fig. 1](image)

The modified Evans operation. PBT, peroneus brevis tendon; MTV, fifth metatarsal.

Analysis. The present series includes 34 ankles in 32 patients already reported in a follow-up study at 24 to 35 months (Lauttamas et al 1982). Of the total of 40 patients (42 ankles), 34 patients (36 ankles) were available for the clinical and radiological survey. Four ankles were reviewed by questionnaire, one patient could not be reached, and one had died.

The classification of subjective criteria is that presented by Good, Jones and Livingstone (1975) and later used by Sefton et al (1979), Lauttamas et al (1982) and Karlsson et al (1988) (Table I). The clinical analysis included examination for local tenderness or swelling, range of ankle movement, and defects of skin sensation.

Lateral radiographs were taken as described by Noesberger, Hackenbruch and Müller (1977), Grace (1984) and Korkala et al (1987), but we used a stronger force to stress the joint. With the heel supported, a 20 kg sandbag was placed on the front of the tibia and the radiograph was taken after one minute. The anteroposterior stress radiograph was taken with the foot in equinus and manually forced into maximum inversion. Both ankles were always examined.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Full activity, including strenuous sport. No pain, swelling or giving way</td>
</tr>
<tr>
<td>Good</td>
<td>Occasional aching only after strenuous exercise. No giving way or feeling of apprehension</td>
</tr>
<tr>
<td>Fair</td>
<td>No giving way but some apprehension, especially on rough ground</td>
</tr>
<tr>
<td>Poor</td>
<td>Recurrent instability and giving way during normal activities, with episodes of pain and swelling</td>
</tr>
</tbody>
</table>

Anterior talar translation was measured on the lateral radiograph as the shortest distance between the subchondral bone plate of the talus to the posterior corner of that of the tibia. Talar tilt was measured on the anteroposterior radiograph as the angle between the tibial and talar articular surfaces.

The following criteria were taken to indicate instability: 1) an anterior talar translation (ATT) more than 6 mm, 2) a difference of more than 3 mm between the ATT on the affected and the unaffected ankle, 3) talar tilt more than 15°, and 4) a difference of more than 10° between the tilt on the affected and the unaffected side. One of the above criteria had to apply for the ankle to be described as unstable (Hackenbruch, Noesberger and Debrunner 1979; Grace 1984; Korkala et al 1987).

The presence or absence of osteophytes and signs of osteoarthritis were recorded.

RESULTS

By subjective criteria, 14 ankles were classified as excellent, 19 good, three fair and four poor. Three of the poor ankles had had a re-operation with one excellent, one good and one poor result. Clinical examination revealed local tenderness in two ankles, one laterally and one medially. There was a sensory defect in one case. Seven ankles had lost more than 5° of extension and/or
flexion compared to the other side. Two of these had a poor subjective result.

The radiological stress analysis showed abnormal laxity in three cases, which were subjectively graded as good, excellent and poor, respectively.

The subjective outcome appeared somewhat less good in the younger patients, but the subgroups of fair and poor results were too small for definite conclusions to be drawn.

The results of the stress analysis showed no positive correlation with the subjective results (Table II). Nor did the presence of osteophytes or slight narrowing of the radiological joint space correlate with the subjective outcome (Table III).

Table II. Correlation between the functional and radiographic results for both operated and unoperated ankles. The three ankles which were re-operated (and therefore graded poor) are excluded. The objective stability and the subjective outcome appear to be independent (mean and range)

<table>
<thead>
<tr>
<th>Subjective result</th>
<th>Operated ankles (n = 35)</th>
<th>Uninjured side (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anterior talar translation (mm)</td>
<td>Talar tilt (degrees)</td>
</tr>
<tr>
<td>Excellent</td>
<td>4 (2 to 7)</td>
<td>3 (0 to 7)</td>
</tr>
<tr>
<td>Good</td>
<td>3 (2 to 5)</td>
<td>3 (0 to 12)</td>
</tr>
<tr>
<td>Fair</td>
<td>4 (2 to 6)</td>
<td>1 (1 to 2)</td>
</tr>
<tr>
<td>Poor</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

In summary we have found the modified Evans procedure to be simple and safe. It can be performed through two small incisions and it causes no damage to the talus. Since the tendon is not acutely angulated it is not vulnerable to rupture at the sharp edges of the bony tunnel.

We dedicate this paper to our teacher, the late Leo 'Lexa' Lauttamus, MD, who performed many of the operations. The work was supported by grants from the Gyllenberg and Paulo Foundations. No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

REFERENCES

THE JOURNAL OF BONE AND JOINT SURGERY
LONG-TERM RESULTS OF THE EVANS PROCEDURE FOR LATERAL INSTABILITY OF THE ANKLE

